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The purpose of this tiny guide is to summarize the basic concepts of turbulence
modeling and to a compile the fundamental turbulence models into one simple
framework. Intended for the beginner, no derivations are included, unless in some
simple cases, as the focus is to present a balance between the physical

understanding and the closure equations. I hope this material will be helpful.
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INTRODUCTION

A turbulent flow field is characterized by velocity fluctuations in all directions and
has an infinite number of scales (degrees of freedom). Solving the NS equations for a
turbulent flow is impossible because the equations are elliptic, non-linear, coupled
(pressure-velocity, temperature-velocity). The flow is three dimensional, chaotic,
diffusive, dissipative, and intermittent. The most important characteristic of a
turbulent flow is the infinite number of scales so that a full numerical resolution of
the flow requires the construction of a grid with a number of nodes that is

proportional to Re%/4.
The governing equations for a Newtonian fluid are

Conservation of Mass
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Conservation of passive scalars (given a scalar T )
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So how can we solve the problem? One of the solutions is to reduce the number of
scales (from infinity to 1 or 2) by using the Reynolds decomposition. Any property
(whether a vector or a scalar) can be written as the sum of an average and a
fluctuation, i.e. ¢ = ® + ¢ where the capital letter denotes the average and the
lower case letter denotes the fluctuation of the property. Of course, this
decomposition will yield a set of equations governing the average flow field. The
new equations will be exact for an average flow field not for the exact turbulent flow

field. By an average flow field we mean that any property becomes constant over




time. The result of using the Reynolds decomposition in the NS equations is called
the RANS or Reynolds Averaged Navier Stokes Equations. Upon substitution of the
Reynolds decomposition (for each variable, we substitute the corresponding

decomposition) we obtain the following RANS equations:

Conservation of Mass
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Conservation of passive scalars (given a scalar T )
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Note: a special property of the Reynolds decomposition is that the average of the fluctuating

component is identically zero, a fact that is used in the derivation of the above equations.
However, by using the Reynolds decomposition, there are new unknowns that were

introduced such as the turbulent stresses p uu; and turbulent fluxes (where the

overbar denotes an average) and therefore, the RANS equations describe an open
set of equations. The need for additional equations to model the new unknowns is

called Turbulence Modeling.

We now have 9 additional unknowns (6 Reynolds stresses and 3 turbulent fluxes).
In total, for the simplest turbulent flow (including the transport of a scalar passive

scalar, e.g. temperature when heat transfer is involved) there 14 unknowns!

A straight forward method to model the additional unknowns is to develop new
PDEs for each term by using the original set of the NS equations (multiplying the
momentum equations to produce the turbulent stresses...). However, the problem

with this procedure is that it will introduce new correlations for the unknowns




(triple correlations) and so on. We then might think of developing new equations for
the triple correlations, nevertheless, we will end up with quadruple correlations...
and so on... An alternative approach is to use the PDEs for the turbulent stresses and
fluxes as a guide to modeling. The turbulent models are as follows, in order of

increasing complexity:

m Algebraic (zero equation) models: mixing length (first order model)
® One equation models: k-model, p-model (first order model)

® Two equation models: k-¢, k-kI, k-2, low Re k-¢ (first order model)
m Algebraic stress models: ASM (second order model)

® Reynolds stress models: RSM (second order model)
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FIRST ORDER MODELS

First order models are based on the analogy between laminar and turbulent flow.
They are also called Eddy Viscosity Models (EVM). The idea is that the average
turbulent flow field is similar to the corresponding laminar flow. This analogy is

illustrated as follows
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which is referred to as the generalized Boussinesq hypothesis.
Note that:

4, = Turbulent Viscosity
k = Turbulent Kinetic Energy
k, = Turbulent Conduction Coefficient

The turbulent viscosity and the turbulent conduction coefficient are flow properties.
They are not properties of the fluid. They vary from one flow to another. So the
problem now is the devise means or models to find these unknowns, the turbulent
viscosity and the turbulent conduction, because the turbulent stresses and fluxes

will be expressed as function of these new flow properties.




ZERO-EQUATION MODELS

In zero equation models, as the name designates, we have no PDE that describes the
transport of the turbulent stresses and fluxes. A simple algebraic relation is used to
close the problem. Based on the mixing length theory, which is the length over
which there is high interaction of vortices in a turbulent flow field, dimensional

analysis is used to show that:
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|, is determined experimentally. For boundary layers, we have
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Equations (8) through (10) are then used in the laminar-turbulent analogy and then
back into the original RANS equations.




ONE-EQUATION MODELS

In one-equation models, a PDE is derived for the turbulent kinetic energy and the
unknowns (turbulent viscosity and conduction coefficient) are expressed as a

function of the turbulent kinetic energy as:

K::%(u2+§5+§ﬁ) (11)

We also make use of the fact that g oc lu but in this case, the velocity scales is

proportional to the square root of the kinetic energy (unlike the above case where u

was proportional to the gradient of velocity). Therefore, we have:
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Now that the turbulent viscosity and turbulent conduction coefficient are expressed
in terms of the turbulent kinetic energy (therefore the turbulent stresses and
turbulent fluxes are functions of the kinetic energy), a PDE is developed for the

turbulent kinetic energy.
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On the other hand, this equation introduces two new unknown correlations; the
turbulent and pressure diffusions (Dx) and the dissipation rates (ex) which need to

be modeled. Finally, we end up with the following:
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Where
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TWO-EQUATION MODELS (k—¢)

In the two-equation models, we develop two PDEs: one for the turbulent kinetic
energy and one for the turbulent dissipation rate. The PDE for the turbulent kinetic
energy is already given by Eq.(13), however, the expression for the turbulent or
eddy viscosity is different. So, the idea is to express the turbulent viscosity as a

function of K and € and then derive PDEs for K and «.
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The equation for the turbulent kinetic energy is repeated here for convenience
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Now instead of modeling €, we shall develop an independent PDE for its transport.
We obtain
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k oT

G, = B9, aa—xl (24)
The constants are determined from simple benchmark experiments.
C u o, o, C, C,, C,., Pr,
0.09 1.0 1.3 1.44 1.92 0-1.0 0.7-0.9
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SECOND ORDER MODELS

The central concept of second order models is to make direct use of the governing
equations for the second order moments (Reynolds stresses and turbulent fluxes)
instead of the questionable Boussinesq hypothesis. The motivation is to overcome
the limitations of first order models in dealing with the isotropy of turbulence and
the extra strains. The overshoot of this approach is the large number of PDEs
induced which involve many unknown or impossible to find correlations. The most
famous models are the Algebraic Stress Model (ASM) and the Reynolds Stress Model
(RSM). The second order modeling approach shall be illustrated with the RSM

model only.

12



THE STANDARD REYNOLDS STRESS MODEL (RSM)

The RSM involves the modeling of turbulent diffusion, pressure strain correlation
which is the most involved part of the RSM, and the turbulent dissipation rate. The

RANS momentum equation is written as
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The objective is to find models for turbulent diffusion (Ditj, D; ), the pressure-strain

correlation (@, ®; ), and the turbulent dissipation rate (&, &, ).

ij’
TURBULENT DIFFUSION MODELING

One way to model the 3rd order turbulent diffusion tensor is to write its own
transport equation. However, this becomes very complicated (handling tensors by

13



itself is sometimes rather involved!). One remedy is to use Generalized Gradient
Diffusion Hypothesis

Dt =c X Wﬂmi (31)
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where the constants are determined from simple experiments.

PRESSURE-STRAIN CORRELATION MODELING

The role of the pressure-strain interaction is to redistribute the turbulent kinetic
energy over the three normal stresses. The governing equation for the evolution of
this phenomenon takes the form of a Lagrangian integro-differential equation

A 2000yt /’— ’—
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With a similar equation for pressure-scalar correlation. Without further

complication, the final analysis assumes the following

Dy =Dy, + Dy + Dy, + Dy + D) + DY (34)
And

O, =D, +D,, + Dy + Py + D, + Dy (35)
where

®;,, P, represent the turbulence-turbulence interaction, i.e. between fluctuations.
They are modeled using an isotropic assumption, as in the decay of homogeneous

turbulence
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®;,, O, represent the shear effects. They are also modeled by “isotropization” of

turbulence
1
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®;;, O, represent the body force effects. Their modeling is similar to that of the

shear effects
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Finally, @), @5, @, Oy, @j; D, represent the wall effects. The basic idea is that a

pressure wave is reflected at a wall and thus affects the whole flow field in an elliptic

manner
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Where Y, represents the distance from the wall to the concerned point in the

domain.

MODELING OF THE TURBULENT DISSIPATION RATE

A simple isotropic model is used to model ¢.

With the following transport equation for the dissipation rate

a ) - _ .
%+—pUJ€ :i{cépujuk K0,,0/)—8:|+£(C.g1|:)k —ngpg) P =£F)ii =—puUl; %(47)
i € %

ot oX; oX, X | K 2
Where
1 —oU.
P,==—P, =—puu, —+
k 2 i pl Jé)X

The constants appearing in RSM equations are given in the following table
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Cs |C1]C21C3|Ciw |Cow|C3w | C¢ | Ce1 | Ce2 | Ct | Crt | Cot|Cst
022/18]06[05] 05 | 03 | 03 [018]1.44[192]02[30|05] 05
Cltw C2tw C3tw
0.5 0.0 0.0
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THE ALGEBRAIC STRESS MODEL

In the algebraic stress model, two main approaches can be undertaken. In the first,
the transport of the turbulent stresses is assumed proportional to the turbulent
kinetic energy; while in the second, convective and diffusive effects are assumed to
be negligible. Algebraic Stress models can only be used where convective and

diffusive fluxes are negligible, i.e. source dominated flows.
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