Other Schemes (unclassified) - structured grids
From CFD-Wiki
(→HLPA - Hybrid Linear / Parabolic Approximation) |
(→MINMOD - MINimum MODulus) |
||
(30 intermediate revisions not shown) | |||
Line 16: | Line 16: | ||
J. Comp. Phys., vol. 49, no. 3, pp. 225-232, 1991 | J. Comp. Phys., vol. 49, no. 3, pp. 225-232, 1991 | ||
+ | |||
+ | Identical to SOUCUP | ||
+ | |||
+ | Normalized variables - uniform grids | ||
+ | |||
+ | <table width="100%"><tr><td> | ||
+ | :<math> | ||
+ | \hat{\phi_{f}}= | ||
+ | \begin{cases} | ||
+ | \frac{3}{2} \hat{\phi_{C}} & 0 \leq \hat{\phi_{C}} \leq \frac{1}{2} \\ | ||
+ | \frac{1}{2} + \frac{1}{2} \hat{\phi_{C}} & \frac{1}{2} \leq \hat{\phi_{C}} \leq 1 \\ | ||
+ | \hat{\phi_{C}} & \hat{\phi_{C}} \triangleleft 0 \ , \ \hat{\phi_{C}} \triangleright 1 | ||
+ | \end{cases} | ||
+ | </math> | ||
+ | </td><td width="5%">(2)</td></tr></table> | ||
+ | |||
+ | Normalized variables - non-uniform grids (NVSF) | ||
+ | |||
+ | <table width="100%"><tr><td> | ||
+ | :<math> | ||
+ | \hat{\phi_{f}}= | ||
+ | \begin{cases} | ||
+ | \frac{\hat{\xi}_f}{\hat{\xi}_C} \hat{\phi}_C & 0 \leq \hat{\phi_{C}} \leq \hat{\xi}_C \\ | ||
+ | \frac{ 1 - \hat{\xi}_f }{ 1 - \hat{\xi}_C } \hat{\phi}_C + \frac{ \hat{\xi}_f - \hat{\xi}_C }{ 1 - \hat{\xi}_C } & \hat{\xi}_C \leq \hat{\phi_{C}} \leq 1 \\ | ||
+ | \hat{\phi_{C}} & \hat{\phi_{C}} \triangleleft 0 \ , \ \hat{\phi_{C}} \triangleright 1 | ||
+ | \end{cases} | ||
+ | </math> | ||
+ | </td><td width="5%">(2)</td></tr></table> | ||
[[Image:NM_convectionschemes_struct_grids_MINMOD_probe_01.jpg]] | [[Image:NM_convectionschemes_struct_grids_MINMOD_probe_01.jpg]] | ||
Line 26: | Line 54: | ||
- | |||
Normalized variables - uniform grids | Normalized variables - uniform grids | ||
Line 97: | Line 124: | ||
Numerical Heat Transfer, Part B, 28:23-38, 1995 | Numerical Heat Transfer, Part B, 28:23-38, 1995 | ||
+ | |||
+ | |||
+ | <table width="100%"><tr><td> | ||
+ | :<math> | ||
+ | \hat{\phi}_{f}= | ||
+ | \begin{cases} | ||
+ | a_{f} + b_{f} \hat{\phi}_{C} & 0 \leq \hat{\phi}_{C} \leq 0.5 x_Q \\ | ||
+ | c_{f} + d_{f} \hat{\phi}_{C} & 0.5 x_Q \leq \hat{\phi}_{C} \leq 1.5 x_Q\\ | ||
+ | e_{f} + f_{f} \hat{\phi}_{C} & 1.5 x_Q \leq \hat{\phi}_{C} \leq 1 x_Q\\ | ||
+ | \hat{\phi}_{C} & \hat{\phi}_{C} \triangleleft 0 \ , \ \hat{\phi}_{C} \triangleright 1 | ||
+ | \end{cases} | ||
+ | </math> | ||
+ | </td><td width="5%">(2)</td></tr></table> | ||
+ | |||
+ | where | ||
+ | |||
+ | <table width="100%"><tr><td> | ||
+ | :<math> | ||
+ | \boldsymbol{a_{f} = 0 } | ||
+ | </math> | ||
+ | </td><td width="5%">(2)</td></tr></table> | ||
+ | |||
+ | <table width="100%"><tr><td> | ||
+ | :<math> | ||
+ | b_{f} = \frac{2 y_{Q} - s_{Q}x_{Q}}{x_{Q}} | ||
+ | </math> | ||
+ | </td><td width="5%">(2)</td></tr></table> | ||
+ | |||
+ | <table width="100%"><tr><td> | ||
+ | :<math> | ||
+ | \boldsymbol{ c_{f} = y_{Q} - s_{Q}x_{Q} } | ||
+ | </math> | ||
+ | </td><td width="5%">(2)</td></tr></table> | ||
+ | |||
+ | <table width="100%"><tr><td> | ||
+ | :<math> | ||
+ | \boldsymbol{ d_{f} = s_{Q} } | ||
+ | </math> | ||
+ | </td><td width="5%">(2)</td></tr></table> | ||
+ | |||
+ | <table width="100%"><tr><td> | ||
+ | :<math> | ||
+ | e_{f} = \frac{3 x_{Q} - 2 y_{Q} - s_{Q}x_{Q}}{3 x_{Q} - 2} | ||
+ | </math> | ||
+ | </td><td width="5%">(2)</td></tr></table> | ||
+ | |||
+ | <table width="100%"><tr><td> | ||
+ | :<math> | ||
+ | f_{f} = \frac{2 y_{Q} + 2 s_{Q} x_{Q} - 2 }{3 x_{Q} - 2} | ||
+ | </math> | ||
+ | </td><td width="5%">(2)</td></tr></table> | ||
+ | |||
+ | and | ||
+ | |||
+ | <table width="100%"><tr><td> | ||
+ | <math> | ||
+ | \hat{\phi}_{C}= \hat{\phi}_{C} U^{+}_{f} + \hat{\phi}_{D} U^{-}_{f} | ||
+ | </math> | ||
+ | </td><td width="5%">(1)</td></tr></table> | ||
== HLPA - Hybrid Linear / Parabolic Approximation == | == HLPA - Hybrid Linear / Parabolic Approximation == | ||
Line 177: | Line 263: | ||
\alpha^{+}_{w} = | \alpha^{+}_{w} = | ||
\begin{cases} | \begin{cases} | ||
- | 1 & \ if \ | \phi_{P} - 2 \phi_{W} + \phi_{WW}| \triangleleft | \phi_{P} - \phi_{WW} | \\ | + | 1 & \ \mbox{if} \ | \phi_{P} - 2 \phi_{W} + \phi_{WW}| \triangleleft | \phi_{P} - \phi_{WW} | \\ |
- | 0 & otherwise | + | 0 & \mbox{otherwise} |
\end{cases} | \end{cases} | ||
</math> | </math> | ||
Line 189: | Line 275: | ||
\alpha^{-}_{w} = | \alpha^{-}_{w} = | ||
\begin{cases} | \begin{cases} | ||
- | 1 & \ if \ | \phi_{W} - 2 \phi_{P} + \phi_{E}| \triangleleft | \phi_{W} - \phi_{E} | \\ | + | 1 & \ \mbox{if} \ | \phi_{W} - 2 \phi_{P} + \phi_{E}| \triangleleft | \phi_{W} - \phi_{E} | \\ |
- | 0 & otherwise | + | 0 & \mbox{otherwise} |
\end{cases} | \end{cases} | ||
</math> | </math> | ||
Line 218: | Line 304: | ||
[[Image:NM_convectionschemes_struct_grids_Schemes_HLPA_Probe_01.jpg]] | [[Image:NM_convectionschemes_struct_grids_Schemes_HLPA_Probe_01.jpg]] | ||
+ | |||
+ | == LODA - Local Oscillation-Damping Algorithm == | ||
+ | |||
+ | J. Zhu and M.A. Leschziner | ||
+ | |||
+ | A local oscillation-damping algorithm for higher-order convection schemes | ||
+ | |||
+ | Comput. Methods Appl. Mech. Engnrng 67 (1988) 355-366 | ||
== CLAM - Curved-Line Advection Method == | == CLAM - Curved-Line Advection Method == | ||
Line 223: | Line 317: | ||
'''Van Leer B.''' , Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme. Journal of Computational Physics 1974; 14:361-370 | '''Van Leer B.''' , Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme. Journal of Computational Physics 1974; 14:361-370 | ||
+ | identical to HLPA | ||
+ | |||
+ | normalised variables - uniform grids | ||
+ | |||
+ | <table width="100%"><tr><td> | ||
+ | :<math> | ||
+ | \hat{\phi_{f}}= | ||
+ | \begin{cases} | ||
+ | \hat{\phi_{C}} \left( 2 - \hat{\phi_{C}} \right) \hat{\phi_{C}} & 0 \leq \hat{\phi_{C}} \leq 1 \\ | ||
+ | \hat{\phi_{C}} & \hat{\phi_{C}} \triangleleft 0 \ , \ \hat{\phi_{C}} \triangleright 1 | ||
+ | \end{cases} | ||
+ | </math> | ||
+ | </td><td width="5%">(2)</td></tr></table> | ||
+ | |||
+ | normalised variables - non-uniform grids (NVSF - compare with HLPA - here is used another variant of notation) | ||
+ | |||
+ | <table width="100%"><tr><td> | ||
+ | :<math> | ||
+ | \hat{\phi}_{f} = | ||
+ | \begin{cases} | ||
+ | \frac{\hat{\xi}_f - \hat{\xi}^{2}_{C}}{\hat{\xi}_C \left( 1 - \hat{\xi}_C \right)} \hat{\phi}_C - \frac{\hat{\xi}_f - \hat{\xi}_{C}}{\hat{\xi}_C \left( 1 - \hat{\xi}_C \right)}\hat{\phi}^{2}_{C} & 0 \leq \hat{\phi}_{C} \leq 1 \\ | ||
+ | \hat{\phi_{C}} & \hat{\phi_{C}} \triangleleft 0 \ , \ \hat{\phi_{C}} \triangleright 1 | ||
+ | \end{cases} | ||
+ | </math> | ||
+ | </td><td width="5%">(2)</td></tr></table> | ||
== van Leer harmonic == | == van Leer harmonic == | ||
Line 266: | Line 385: | ||
AIAA J., vol. 30, No. 1, p.64 (1992) | AIAA J., vol. 30, No. 1, p.64 (1992) | ||
- | |||
- | |||
== LPPA - Linear and Piecewise / Parabolic Approximasion == | == LPPA - Linear and Piecewise / Parabolic Approximasion == | ||
Line 294: | Line 411: | ||
a_{f}+ b_{f} \hat{\phi}_{C} + c_{f}\hat{\phi}^{2}_{C} & 0 \leq \hat{\phi_{C}} \leq x_{Q} \\ | a_{f}+ b_{f} \hat{\phi}_{C} + c_{f}\hat{\phi}^{2}_{C} & 0 \leq \hat{\phi_{C}} \leq x_{Q} \\ | ||
d_{f}+ d_{f} \hat{\phi}_{C} + f_{f}\hat{\phi}^{2}_{C} & x_{Q} \leq \hat{\phi_{C}} \leq 1 \\ | d_{f}+ d_{f} \hat{\phi}_{C} + f_{f}\hat{\phi}^{2}_{C} & x_{Q} \leq \hat{\phi_{C}} \leq 1 \\ | ||
- | \hat{\phi_{C}} & \hat{\ | + | \hat{\phi_{C}} & \hat{\phi}_{C} \triangleleft 0 \ , \ \hat{\phi}_{C} \triangleright 1 |
\end{cases} | \end{cases} | ||
</math> | </math> | ||
Line 338: | Line 455: | ||
== GAMMA == | == GAMMA == | ||
+ | |||
+ | Jasak H., Weller H.G., Gosman A.D. | ||
+ | |||
+ | High resolution NVD differencing scheme for arbitrarily unstructured meshes | ||
+ | |||
+ | International Journal for Numerical Methods in Fluids | ||
+ | |||
+ | 1999, 31: 431-449 | ||
+ | |||
+ | <table width="100%"><tr><td> | ||
+ | :<math> | ||
+ | \hat{\phi}_{f}= | ||
+ | \begin{cases} | ||
+ | \hat{\phi}_C \left[ 1 + \frac{1}{2 \beta_m } \left( 1 - \hat{\phi}_C \right) \right] & 0 \triangleleft \hat{\phi}_C \triangleleft \beta_m \\ | ||
+ | \frac{1}{2}\hat{\phi}_{C} + \frac{1}{2} & \beta_m \leq \hat{\phi}_C \leq 1 \\ | ||
+ | \hat{\phi}_C & \mbox{elsewhere} | ||
+ | \end{cases} | ||
+ | </math> | ||
+ | </td><td width="5%">(2)</td></tr></table> | ||
+ | |||
+ | |||
+ | <table width="100%"><tr><td> | ||
+ | :<math> | ||
+ | \hat{\phi}_{f}= | ||
+ | \begin{cases} | ||
+ | \hat{\phi}_C \left[1 + \frac{1}{\beta_m} \frac{ \hat{\xi}_f - \hat{\xi}_C }{ 1 - \hat{\xi}_C } \left( 1 - \hat{\phi}_C \right) \right] & 0 \triangleleft \hat{\phi}_C \triangleleft \beta_m \\ | ||
+ | \frac{ 1 - \hat{\xi}_f }{ 1 - \hat{\xi}_C } \hat{\phi}_C + \frac{ \hat{\xi}_f - \hat{\xi}_C }{ 1 - \hat{\xi}_C } & \beta_m \leq \hat{\phi}_C \leq 1 \\ | ||
+ | \hat{\phi}_C & \mbox{elsewhere} | ||
+ | \end{cases} | ||
+ | </math> | ||
+ | </td><td width="5%">(2)</td></tr></table> | ||
== CUBISTA - Convergent and Universally Bounded Interpolation Scheme for the Treatment of Advection == | == CUBISTA - Convergent and Universally Bounded Interpolation Scheme for the Treatment of Advection == | ||
'''M.A. Alves, P.J.Oliveira, F.T. Pinho''', A convergent and Universally Bounded Interpolation Scheme for the Treatment of Advection // International Lournal For Numerical Methods in Fluids 2003, 41; 47-75 | '''M.A. Alves, P.J.Oliveira, F.T. Pinho''', A convergent and Universally Bounded Interpolation Scheme for the Treatment of Advection // International Lournal For Numerical Methods in Fluids 2003, 41; 47-75 | ||
+ | |||
+ | normalised variables - uniform grid | ||
+ | |||
+ | <table width="100%"><tr><td> | ||
+ | :<math> | ||
+ | \hat{\phi}_{f}= | ||
+ | \begin{cases} | ||
+ | \frac{7}{4}\hat{\phi}_{C} & 0 \triangleleft \hat{\phi}_C \triangleleft \frac{3}{8} \\ | ||
+ | \frac{3}{4}\hat{\phi}_{C} + \frac{3}{8} & \frac{3}{8} \leq \hat{\phi}_C \leq \frac{3}{4} \\ | ||
+ | \frac{1}{4}\hat{\phi}_{C} + \frac{3}{4} & \frac{3}{4} \triangleleft \hat{\phi}_C \triangleleft 1 \\ | ||
+ | \hat{\phi}_{C} & \mbox{elsewhere} | ||
+ | \end{cases} | ||
+ | </math> | ||
+ | </td><td width="5%">(2)</td></tr></table> | ||
+ | |||
+ | normalised variables - non-uniform grid (NVSF) | ||
+ | |||
+ | <table width="100%"><tr><td> | ||
+ | :<math> | ||
+ | \hat{\phi}_{f}= | ||
+ | \begin{cases} | ||
+ | \left[1+\frac{\hat{\xi}_f- \hat{\xi}_C}{3\left( 1 - \hat{\xi}_C \right) } \right] \frac{\hat{\xi}_f}{\hat{\xi}_C} \hat{\phi}_C & 0 \triangleleft \hat{\phi}_C \triangleleft \frac{3}{4}\hat{\xi}_C \\ | ||
+ | \frac{\hat{\xi}_f \left(1- \hat{\xi}_f \right)}{ \hat{\xi}_C \left( 1 - \hat{\xi}_C \right)} \hat{\phi}_C + \frac{\hat{\xi}_f \left( \hat{\xi}_f - \hat{\xi}_C \right)}{1- \hat{\xi}_C} & \frac{3}{4} \hat{\xi}_C \leq \hat{\phi}_C \leq \frac{1 + 2 \left( \hat{\xi}_f - \hat{\xi}_C \right) }{ 2 \hat{\xi}_f - \hat{\xi}_C } \hat{\xi}_C \\ | ||
+ | \frac{\hat{\xi}_f \left(1- \hat{\xi}_f \right)}{ \hat{\xi}_C \left( 1 - \hat{\xi}_C \right)} \hat{\phi}_C + \frac{\hat{\xi}_f \left( \hat{\xi}_f - \hat{\xi}_C \right)}{1- \hat{\xi}_C} & \frac{1 + 2 \left( \hat{\xi}_f - \hat{\xi}_C \right) }{ 2 \hat{\xi}_f - \hat{\xi}_C } \hat{\xi}_C \triangleleft \hat{\phi}_C \triangleleft 1 \\ | ||
+ | \hat{\phi}_C & \mbox{elsewhere} | ||
+ | \end{cases} | ||
+ | </math> | ||
+ | </td><td width="5%">(2)</td></tr></table> | ||
Latest revision as of 21:09, 10 December 2010
Chakravarthy-Osher limiter
Sweby - limiter
Superbee limiter
R-k limiter
MINMOD - MINimum MODulus
Harten A. High resolution schemes using flux limiters for hyperbolic conservation laws. Journal of Computational Physics 1983; 49: 357-393
A. Harten
High Resolution Schemes for Hyperbolic Conservation Laws
J. Comp. Phys., vol. 49, no. 3, pp. 225-232, 1991
Identical to SOUCUP
Normalized variables - uniform grids
| (2) |
Normalized variables - non-uniform grids (NVSF)
| (2) |
SOUCUP - Second-Order Upwind Central differnce-first order UPwind
Zhu J. (1992), "On the higher-order bounded discretization schemes for finite volume computations of incompressible flows", Computational Methods in Applied Mechanics and Engineering. 98. 345-360.
J. Zhu, W.Rodi (1991), "A low dispersion and bounded convection scheme", Comp. Meth. Appl. Mech.&Engng, Vol. 92, p 225.
Normalized variables - uniform grids
| (2) |
Normalized variables - non-uniform grids
| (2) |
where
| (2) |
| (2) |
| (2) |
| (2) |
ISNAS - Interpolation Scheme which is Nonoscillatory for Advected Scalars
Third-order flux-limiter scheme
M. Zijlema , On the construction of a third-order accurate monotone convection scheme with application to turbulent flows in general domains. International Journal for numerical methods in fluids, 22:619-641, 1996.
COPLA - COmbination of Piecewise Linear Approximation
Seok Ki Choi, Ho Yun Nam, Mann Cho
Evaluation of a High-Order Bounded Convection Scheme: Three-Dimensional Numerical Experiments
Numerical Heat Transfer, Part B, 28:23-38, 1995
| (2) |
where
| (2) |
| (2) |
| (2) |
| (2) |
| (2) |
| (2) |
and
| (1) |
HLPA - Hybrid Linear / Parabolic Approximation
Zhu J. Low Diffusive and oscillation-free convection scheme // Communications and Applied Numerical Methods. 1991. 7, N3. 225-232.
Zhu J., Rodi W. A low dispersion and bounded discretization schemes for finite volume computations of incompressible flows // Computational Methods for Applied Mechanics and Engineering. 1991. 92. 87-96
In this scheme, the normalized face value is approximated by a combination of linear and parabolic charachteristics passing through the points, O, Q, and P in the NVD. It satisfies TVD condition and is second-order accurate
Usual variables
| (2) |
Normalized variables - uniform grids
| (2) |
Normalized variables - non-uniform grids
| (2) |
where
| (2) |
| (2) |
| (2) |
Implementation
Using the switch factors:
for
| (2) |
for
| (2) |
and taken all the possible flow directions into account, the un-normalized form of equation can be written as
| (2) |
where
| (2) |
| (2) |
LODA - Local Oscillation-Damping Algorithm
J. Zhu and M.A. Leschziner
A local oscillation-damping algorithm for higher-order convection schemes
Comput. Methods Appl. Mech. Engnrng 67 (1988) 355-366
CLAM - Curved-Line Advection Method
Van Leer B. , Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme. Journal of Computational Physics 1974; 14:361-370
identical to HLPA
normalised variables - uniform grids
| (2) |
normalised variables - non-uniform grids (NVSF - compare with HLPA - here is used another variant of notation)
| (2) |
van Leer harmonic
BSOU
G. Papadakis, G. Bergeles.
A locally modified second order upwind scheme for convection terms discretization.
Int. J. Numer. Meth. Heat Fluid Flow, 5.49-62, 1995
MSOU - Monotonic Second Order Upwind Differencing Scheme
Sweby
Koren
bounded CUS
B. Koren
A robust upwind discretisation method for advection, diffusion and source terms
In: Numerical Mthods for Advection-Diffusion Problems, Ed. C.B.Vreugdenhil& B.Koren, Vieweg, Braunscheweigh, p.117, (1993)
H-CUS
bounded CUS
N.P.Waterson H.Deconinck
A unified approach to the design and application of bounded high-order convection schemes
VKI-preprint, 1995-21, (1995)
MLU
B. Noll
Evaluation of a bounded high-resolution scheme for combustor flow computations
AIAA J., vol. 30, No. 1, p.64 (1992)
LPPA - Linear and Piecewise / Parabolic Approximasion
Normalized variables - uniform grids
| (2) |
Normalized variables - non-uniform grids
| (2) |
where
| (2) |
| (2) |
| (2) |
| (2) |
| (2) |
| (2) |
GAMMA
Jasak H., Weller H.G., Gosman A.D.
High resolution NVD differencing scheme for arbitrarily unstructured meshes
International Journal for Numerical Methods in Fluids
1999, 31: 431-449
| (2) |
| (2) |
CUBISTA - Convergent and Universally Bounded Interpolation Scheme for the Treatment of Advection
M.A. Alves, P.J.Oliveira, F.T. Pinho, A convergent and Universally Bounded Interpolation Scheme for the Treatment of Advection // International Lournal For Numerical Methods in Fluids 2003, 41; 47-75
normalised variables - uniform grid
| (2) |
normalised variables - non-uniform grid (NVSF)
| (2) |
Return to Numerical Methods
Return to Approximation Schemes for convective term - structured grids