PFV V8cW 3D linear FE
From CFD-Wiki
(Difference between revisions)
(Created page with "Function '''V8cW.m''' for 3D linear divergence-free finite element. <pre> function S=V8cW(ni,q,r,s) %V8C - 3D, 8-node, 48 DOF solenoidal velocity element %Array of solenoidal v...") |
m |
||
Line 3: | Line 3: | ||
<pre> | <pre> | ||
function S=V8cW(ni,q,r,s) | function S=V8cW(ni,q,r,s) | ||
- | % | + | %V8CW - 3D, 8-node, 48 DOF solenoidal velocity element |
%Array of solenoidal velocity basis functions, corner nodes. | %Array of solenoidal velocity basis functions, corner nodes. | ||
% Usage | % Usage | ||
- | % V = | + | % V = V8cW(ni,q,r,s) |
% ni - coordinates of i-th node on reference cube | % ni - coordinates of i-th node on reference cube | ||
% q,r,s - point in reference cube for evaluation | % q,r,s - point in reference cube for evaluation |
Latest revision as of 14:12, 10 August 2011
Function V8cW.m for 3D linear divergence-free finite element.
function S=V8cW(ni,q,r,s) %V8CW - 3D, 8-node, 48 DOF solenoidal velocity element %Array of solenoidal velocity basis functions, corner nodes. % Usage % V = V8cW(ni,q,r,s) % ni - coordinates of i-th node on reference cube % q,r,s - point in reference cube for evaluation % V - velocity vector at (q,r,s) % % Jonas Holdeman, January 2011 % -------------------------------------------------------------- qi=ni(1); q0=q*ni(1); ri=ni(2); r0=r*ni(2); si=ni(3); s0=s*ni(3); % array of solenoidal vectors S=[ 3/64*ri*si/qi*(1-q0^2)*(q0+2)*(r0^2-s0^2), 1/128*si*(1+q0)*(q0*(1-q0)*(33*s0^2+27*r0^2*(1-s0^2)+8*r0-25)-36*(1-r0^2)*(1-s0^2)), ... -1/128*ri*(1+q0)*(q0*(1-q0)*(33*r0^2+27*s0^2*(1-r0^2)+8*s0-25)-36*(1-r0^2)*(1-s0^2)), ... 1/64*(1+q0)^2*(1+r0)*(1+s0)*(2-q0)*(4-(9-9*r0)*(1-s0)), 3/128*ri/qi*(1-q0^2)*(1-r0^2)*(3*q0*(1-s0^2)+2*q0+2*s0+4), ... 3/128*si/qi*(1-q0^2)*(1-s0^2)*(3*q0*(1-r0^2)+2*q0+2*r0+4); ... -1/128*si*(1+r0)*(r0*(1-r0)*(33*s0^2+27*q0^2*(1-s0^2)+8*q0-25)-36*(1-q0^2)*(1-s0^2)), ... 3/64*qi*si/ri*(1-r0^2)*(r0+2)*(s0^2-q0^2), 1/128*qi*(1+r0)*(r0*(1-r0)*(33*q0^2+27*s0^2*(1-q0^2)+8*s0-25)-36*(1-q0^2)*(1-s0^2)), ... 3/128*qi/ri*(1-r0^2)*(1-q0^2)*(3*r0*(1-s0^2)+2*r0+2*s0+4), 1/64*(1+r0)^2*(1+s0)*(1+q0)*(2-r0)*(4-9*(1-s0)*(1-q0)), ... 3/128*si/ri*(1-r0^2)*(1-s0^2)*(3*r0*(1-q0^2)+2*r0+2*q0+4); ... 1/128*ri*(1+s0)*(s0*(1-s0)*(33*r0^2+27*q0^2*(1-r0^2)+8*q0-25)-36*(1-q0^2)*(1-r0^2)), ... -1/128* qi*(1+s0)*(s0*(1-s0)*(33*q0^2+27*r0^2*(1-q0^2)+8*r0-25)-36*(1-q0^2)*(1-r0^2)), 3/64*qi*ri/si*(1-s0^2)*(s0+2)*(q0^2-r0^2), ... 3/128*qi/si*(1-s0^2)*(1-q0^2)*(3*s0*(1-r0^2)+2*s0+2*r0+4), 3/128*ri/si*(1-s0^2)*(1-r0^2)*(3*s0*(1-q0^2)+2*s0+2*q0+4), ... 1/64*(1+s0)^2*(1+q0)*(1+r0)*(2-s0)*(4-9*(1-q0)*(1-r0))]; return;