CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Wiki > Realisable k-epsilon model

Realisable k-epsilon model

From CFD-Wiki

(Difference between revisions)
Jump to: navigation, search
Line 23: Line 23:
where <math> \overline{\Omega_{ij}} </math>  is the mean rate-of-rotation tensor viewed in a rotating reference frame with the angular velocity <math> \omega_k  </math>. The model constants  <math> A_0  </math> and <math> A_s  </math> are given by: <br>
where <math> \overline{\Omega_{ij}} </math>  is the mean rate-of-rotation tensor viewed in a rotating reference frame with the angular velocity <math> \omega_k  </math>. The model constants  <math> A_0  </math> and <math> A_s  </math> are given by: <br>
-
<math> A_0 = 4.04, \; \;  A_s = \sqrt{6}  \cos \phi </math>
+
<math> A_0 = 4.04, \; \;  A_s = \sqrt{6}  \cos \phi </math> <br>
 +
 
 +
<math>  \phi = \frac{1}{3} \cos^{-1} (\sqrt{6} W), \; \;    W = \frac{S_{ij} S_{jk} S_{ki}}{{\tilde{S}} ^3}, \; \; \tilde{S} = \sqrt{S_{ij} S_{ij}}, \; \; S_{ij} = \frac{1}{2}\left(\frac{\partial u_j}{\partial x_i}  + \frac{\partial u_i}{\partial x_j} \right)  </math>
 +
 
 +
 
 +
==Model Constants ==
 +
 
 +
<math> C_{1 \epsilon} = 1.44,  \;\; C_2 = 1.9, \;\; \sigma_k = 1.0, \;\; \sigma_{\epsilon} = 1.2  </math>

Revision as of 23:09, 18 September 2005

Transport Equations

 \frac{\partial}{\partial t} (\rho k) + \frac{\partial}{\partial x_j} (\rho k u_j) = \frac{\partial}{\partial x_j} \left [ \left(\mu + \frac{\mu_t}{\sigma_k}\right) \frac{\partial k} {\partial x_j} \right ] + P_k + P_b - \rho \epsilon - Y_M + S_k


 \frac{\partial}{\partial t} (\rho \epsilon) + \frac{\partial}{\partial x_j} (\rho \epsilon u_j) = \frac{\partial}{\partial x_j} \left[ \left(\mu + \frac{\mu_t}{\sigma_{\epsilon}}\right) \frac{\partial \epsilon}{\partial x_j} \right ] + \rho \, C_1 S \epsilon - \rho \, C_2 \frac{{\epsilon}^2} {k + \sqrt{\nu \epsilon}} + C_{1 \epsilon}\frac{\epsilon}{k} C_{3 \epsilon} P_b + S_{\epsilon}

Where

 C_1  =  \max\left[0.43, \frac{\eta}{\eta + 5}\right] , \;\;\;\;\; \eta  =  S \frac{k}{\epsilon}, \;\;\;\;\; S =\sqrt{2 S_{ij} S_{ij}}

In these equations,  P_k represents the generation of turbulence kinetic energy due to the mean velocity gradients, calculated in same manner as standard k-epsilon model.  P_b is the generation of turbulence kinetic energy due to buoyancy, calculated in same way as standard k-epsilon model.

Modelling Turbulent Viscosity

 \mu_t = \rho C_{\mu} \frac{k^2}{\epsilon}

where
 C_{\mu} = \frac{1}{A_0 + A_s \frac{k U^*}{\epsilon}}
  U^* \equiv \sqrt{S_{ij} S_{ij} + \tilde{\Omega}_{ij} \tilde{\Omega}_{ij}}   ;
 \tilde{\Omega}_{ij}  =  \Omega_{ij} - 2 \epsilon_{ijk} \omega_k      ;
  \Omega_{ij}  =  \overline{\Omega_{ij}} - \epsilon_{ijk} \omega_k

where  \overline{\Omega_{ij}} is the mean rate-of-rotation tensor viewed in a rotating reference frame with the angular velocity  \omega_k  . The model constants  A_0  and  A_s  are given by:
 A_0 = 4.04, \; \;  A_s = \sqrt{6}  \cos \phi

  \phi = \frac{1}{3} \cos^{-1} (\sqrt{6} W), \; \;    W = \frac{S_{ij} S_{jk} S_{ki}}{{\tilde{S}} ^3}, \; \; \tilde{S} = \sqrt{S_{ij} S_{ij}}, \; \; S_{ij} = \frac{1}{2}\left(\frac{\partial u_j}{\partial x_i}  + \frac{\partial u_i}{\partial x_j} \right)


Model Constants

 C_{1 \epsilon} = 1.44,  \;\; C_2 = 1.9, \;\; \sigma_k = 1.0, \;\; \sigma_{\epsilon} = 1.2

My wiki