CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Wiki > 2-D linearised Euler equation

2-D linearised Euler equation

From CFD-Wiki

(Difference between revisions)
Jump to: navigation, search
Line 8: Line 8:
[-50,50]*[-50,50]
[-50,50]*[-50,50]
== Initial Condition ==
== Initial Condition ==
 +
:<math> p(x,0)=a*exp(-ln(2)*((x-xc)^2+(y-yc)^2)/b^2) </math>
== Boundary Condition ==
== Boundary Condition ==
 +
Characteristic Boundary Condition
== Numerical Method ==
== Numerical Method ==
 +
4th Order Compact scheme in space
 +
4th order low storage RK in time
== Results ==
== Results ==
==  Reference ==
==  Reference ==

Revision as of 07:24, 12 November 2005

Contents

Problem Definition

 \frac{\partial u}{\partial t}+M \frac{\partial u}{\partial x}+\frac{\partial p}{\partial x}=0
 \frac{\partial v}{\partial t}+M \frac{\partial v}{\partial x}+\frac{\partial p}{\partial y}=0
 \frac{\partial p}{\partial t}+\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+M\frac{\partial p}{\partial x}=0
 \frac{\partial \rho}{\partial t}+\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+M\frac{\partial \rho}{\partial x}=0

where M is the mach number , speed of sound is assumed to be 1, all the variabled refer to acoustic perturbations over the mean flow.

Domain

[-50,50]*[-50,50]

Initial Condition

 p(x,0)=a*exp(-ln(2)*((x-xc)^2+(y-yc)^2)/b^2)

Boundary Condition

Characteristic Boundary Condition

Numerical Method

4th Order Compact scheme in space 4th order low storage RK in time

Results

Reference

  • Williamson, Williamson (1980), "Low Storage Runge-Kutta Schemes", Journal of Computational Physics, Vol.35, pp.48–56.
  • Lele, Lele, S. K. (1992), "Compact Finite Difference Schemes with Spectral-like Resolution,” Journal of Computational Physics", Journal of Computational Physics, Vol. 103, pp 16–42.
My wiki