Kruzkov theorem
From CFD-Wiki
(Difference between revisions)
(One intermediate revision not shown) | |||
Line 46: | Line 46: | ||
</math> | </math> | ||
- | * '''Finite domain of dependence''': If <math>u, v</math> are two entropy solutions, <math>u_o, v_o \in L^\infty</math> and | + | * '''Finite domain of dependence''': If <math>u, v</math> are two entropy solutions, corresponding to initial conditions <math>u_o, v_o \in L^\infty</math> and |
Line 60: | Line 60: | ||
u_o(x) - v_o(x) | d x | u_o(x) - v_o(x) | d x | ||
</math> | </math> | ||
+ | |||
+ | ==Related pages== | ||
+ | |||
+ | *[[Monotone scheme]] | ||
+ | *[[TVD scheme]] | ||
+ | *[[Monotonicity preserving scheme]] |
Latest revision as of 03:45, 30 September 2005
The scalar Cauchy problem
with initial condition
has a unique entropy solution
which fulfills (important for numerics)
- Stability
- Monotone solution: If a.e. in then
- TV-diminishing: If then
- Conservation: If then
- Finite domain of dependence: If are two entropy solutions, corresponding to initial conditions and
then