CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Wiki > V2-f models

V2-f models

From CFD-Wiki

(Difference between revisions)
Jump to: navigation, search
(Short explanation)
m (The \zeta - f equations)
 
(23 intermediate revisions not shown)
Line 1: Line 1:
 +
{{Template:Turbulence modeling}}
 +
==Introduction==
==Introduction==
-
The <math>v^2-f</math> model is similar to the [[Standard k-epsilon model]]. Additionally, it incorporates also some near-wall turbulence anisotropy as well as non-local pressure-strain effects. It is a general turbulence model for low [[Reynolds number|Reynolds-numbers]], that does not need to make use of wall functions because it is valid upto solid walls.
+
The <math>\overline{v^2}-f</math> model is similar to the [[Standard k-epsilon model]]. Additionally, it incorporates also some near-wall turbulence anisotropy as well as non-local pressure-strain effects. It is a general turbulence model for low [[Reynolds number|Reynolds-numbers]], that does not need to make use of wall functions because it is valid upto solid walls.
-
The <math>v^2-f</math> model uses a velocity scale, <math>\overline {v^2}</math>, instead of [[turbulent kinetic energy]], <math>k</math>, for the evaluation of the eddy viscosity. <math>\overline {v^2}</math> can be thought of as the velocity fluctuation normal to the streamlines. It can provide the right scaling for the representation of the damping of turbulent transport close to the wall.
+
Instead of [[turbulent kinetic energy]] <math>k</math>, the <math>\overline{v^2}-f</math> model uses a velocity scale <math>\overline {v^2}</math> (hence the name <math>\overline{v^2}-f</math> or the ''v2-f model'') for the evaluation of the eddy viscosity. <math>\overline {v^2}</math> can be thought of as the velocity fluctuation normal to the streamlines. It can provide the right scaling for the representation of the damping of turbulent transport close to the wall. The anisotropic wall effects are modelled through the elliptic relaxation function <math>f</math>, by solving a separate elliptic equation of the Helmholtz type.
 +
 
 +
 
 +
In order to improve the computational preformances of the <math>\overline{\upsilon^2}-f</math> model, a variant of this eddy-viscosity model is derived when the change of variables is introduced.
 +
Instead of using the wall-normal velocity fluctuation <math>\overline{\upsilon^2}</math> as the velocity scale, the normalised wall-normal velocity scale <math>\zeta = \overline{\upsilon^2} / k</math> is used (hence the name <math>\zeta-f</math> or the [[zeta-f model]]).
 +
This turbulence variable can be regarded as the ratio of the two time
 +
scales: scalar <math>k / \varepsilon</math> (isotropic), and lateral <math>\overline{\upsilon^2} / \varepsilon</math> (anisotropic).
 +
Following the definition of <math>\zeta</math>, the new transport equation is derived from the equations for <math>\overline{\upsilon^2}</math> and <math>k</math>, and solved instead of the transport equation for <math>\overline{\upsilon^2}</math>.
 +
 
 +
==The <math>\overline{\upsilon^2} - f</math> equations==
 +
The turbulent viscosity is defined as
 +
 
 +
<math>\nu_t^{\overline{\upsilon^2}} = C_\mu \, \overline{\upsilon^2} \, T</math>
 +
 
 +
and the turbulent quantities, in addition to standard <math>k</math> and <math>\varepsilon</math>, are obtaned from two more equations: the transport equation for <math>\overline{\upsilon^2}</math>
 +
 
 +
<math>\frac{\partial \overline{\upsilon^2}}{\partial t} + U_j \frac{\partial \overline{\upsilon^2}}{\partial x_j} = k f - \frac{\overline{\upsilon^2}}{k} \varepsilon + \frac{\partial}{\partial x_j} \left[ \left( \nu + \frac{\nu_t}{\sigma_{\overline{\upsilon^2}}} \right) \frac{\partial \overline{\upsilon^2}}{\partial x_j} \right]
 +
</math>
 +
 
 +
and the elliptic equation for the relaxation function <math>f</math>
 +
 
 +
<math>L^2 \nabla^2 f - f = \frac{C_1 - 1}{T} \left( \frac{\overline{\upsilon^2}}{k} - \frac{2}{3} \right) - C_2 \frac{P_k}{\varepsilon}</math>
 +
 
 +
where the turbulence length scale <math>L</math>
 +
 
 +
<math>\displaystyle L = C_L \max \left[ \frac{\displaystyle k^{3/2}}{\displaystyle \varepsilon} , C_{\eta} \left( \frac{\displaystyle \nu^3}{\displaystyle \varepsilon} \right)^{1/4} \right]</math>
 +
 
 +
and the turbulence time scale <math>T</math>
 +
 
 +
<math>\displaystyle T = \max \left[ \frac{\displaystyle k}{\displaystyle \varepsilon} , C_T \left( \frac{\displaystyle \nu}{\displaystyle \varepsilon} \right)^{1/2} \right]</math>
 +
 
 +
are bounded with their respective the Kolmogorov definitions (realisability constraints can also be applied, as given below).
 +
 
 +
The coefficients used read: <math>C_\mu = 0.22</math>, <math>\sigma_{\overline{\upsilon^2}} = 1</math>, <math>C_1 = 1.4</math>, <math>C_2 = 0.45</math>, <math>C_T = 6</math>, <math>C_L = 0.25</math> and <math>C_{\eta} = 85</math>.
 +
 
 +
==The <math>\zeta - f</math> equations==
 +
The turbulent viscosity is defined as
 +
 
 +
<math>\nu_t^\zeta = C_\mu \, \zeta \, k \, T</math>
 +
 
 +
and the turbulent quantities are obtained from another set of equations. When the change of variables is done, the obtained transport equation for <math>\zeta</math> reads
 +
 
 +
<math>\frac{\partial \zeta}{\partial t} + U_j \frac{\partial \zeta}{\partial x_j} = f - \frac{\zeta}{k} P_k + \frac{\partial}{\partial x_j} \left[ \left( \nu + \frac{\nu_t}{\sigma_{\zeta}} \right) \frac{\partial \zeta}{\partial x_j} \right]</math>
 +
 
 +
and, in conjunction with the quasi-linear SSG pressure-strain model, the elliptic equation for the relaxation function <math>f</math>
 +
 
 +
<math>L^2 \nabla^2 f - f = \frac{1}{T} \left( C_1 - 1 + C'_2 \frac{P_k}{\varepsilon} \right) \left( \zeta - \frac{2}{3} \right)</math>
 +
 
 +
where the turbulence time scale <math>T</math>
 +
 
 +
<math>T = \max \left[ \min \left( \frac{k}{\varepsilon},\, \frac{0.6}{\sqrt{6} C_{\mu} |S|\zeta} \right), C_T  \left( \frac{\nu}{\varepsilon} \right)^{1/2} \right]</math>
 +
 
 +
and the turbulence length scale <math>L</math>
 +
 
 +
<math>L = C_L \, \max \left[ \min \left( \frac{k^{3/2}}{\varepsilon}, \,
 +
  \frac{k^{1/2}}{\sqrt{6} C_{\mu} |S| \zeta} \right), C_{\eta}
 +
  \left( \frac{\nu^3}{\varepsilon} \right)^{1/4} \right]</math>
 +
 
 +
are limited with their Kolmogorov values as the lower bounds, and Durbin's realisability constraints.
 +
 
 +
The coefficients used read:  <math>C_\mu = 0.22</math>, <math>\sigma_{\zeta} = 1.2</math>, <math>C_1 = 1.4</math>, <math>C_2' = 0.65</math>, <math>C_T = 6</math>, <math>C_L = 0.36</math> and <math>C_{\eta} = 85</math>.
 +
 
 +
==Notes==
 +
This model can not be used to solve Eulerian multiphase problems.
 +
 
 +
Mathematically and physically the <math>\overline{\upsilon^2}-f</math> and the <math>\zeta-f</math> model are the same, but due to better numerical properties (stability and near-wall mesh requirements) the <math>\zeta-f</math> model performs better in the complex flow calculations.
-
==Limitations==
 
-
Can not be used to solve Eulerian multiphase problems.
 
== References ==
== References ==
*<b>Durbin, P.</b> Separated flow computations with the <math>k-\epsilon-\overline{v^2} </math>model, AIAA Journal, 33, 659-664, 1995.
*<b>Durbin, P.</b> Separated flow computations with the <math>k-\epsilon-\overline{v^2} </math>model, AIAA Journal, 33, 659-664, 1995.
-
{{stub}}
+
*<b>Laurence, D.R., Uribe J.C., Utyuzhnikov, S.V.</b> A Robust Formulation of the v2-f  Model, Flow Turbulence and Combustion, 73, 169-185, 2004.
 +
 
 +
*<b>Popovac, M., Hanjalic, K.</b> Compound Wall Treatment for RANS Computation of Complex Turbulent Flows and Heat Transfer, Flow Turbulence and Combustion, 78, 177-202, 2007.
 +
 
 +
 
[[Category:Turbulence models]]
[[Category:Turbulence models]]
 +
 +
{{stub}}

Latest revision as of 05:45, 7 February 2014

Turbulence modeling
Turbulence
RANS-based turbulence models
  1. Linear eddy viscosity models
    1. Algebraic models
      1. Cebeci-Smith model
      2. Baldwin-Lomax model
      3. Johnson-King model
      4. A roughness-dependent model
    2. One equation models
      1. Prandtl's one-equation model
      2. Baldwin-Barth model
      3. Spalart-Allmaras model
    3. Two equation models
      1. k-epsilon models
        1. Standard k-epsilon model
        2. Realisable k-epsilon model
        3. RNG k-epsilon model
        4. Near-wall treatment
      2. k-omega models
        1. Wilcox's k-omega model
        2. Wilcox's modified k-omega model
        3. SST k-omega model
        4. Near-wall treatment
      3. Realisability issues
        1. Kato-Launder modification
        2. Durbin's realizability constraint
        3. Yap correction
        4. Realisability and Schwarz' inequality
  2. Nonlinear eddy viscosity models
    1. Explicit nonlinear constitutive relation
      1. Cubic k-epsilon
      2. EARSM
    2. v2-f models
      1. \overline{\upsilon^2}-f model
      2. \zeta-f model
  3. Reynolds stress model (RSM)
Large eddy simulation (LES)
  1. Smagorinsky-Lilly model
  2. Dynamic subgrid-scale model
  3. RNG-LES model
  4. Wall-adapting local eddy-viscosity (WALE) model
  5. Kinetic energy subgrid-scale model
  6. Near-wall treatment for LES models
Detached eddy simulation (DES)
Direct numerical simulation (DNS)
Turbulence near-wall modeling
Turbulence free-stream boundary conditions
  1. Turbulence intensity
  2. Turbulence length scale

Contents

Introduction

The \overline{v^2}-f model is similar to the Standard k-epsilon model. Additionally, it incorporates also some near-wall turbulence anisotropy as well as non-local pressure-strain effects. It is a general turbulence model for low Reynolds-numbers, that does not need to make use of wall functions because it is valid upto solid walls. Instead of turbulent kinetic energy k, the \overline{v^2}-f model uses a velocity scale \overline {v^2} (hence the name \overline{v^2}-f or the v2-f model) for the evaluation of the eddy viscosity. \overline {v^2} can be thought of as the velocity fluctuation normal to the streamlines. It can provide the right scaling for the representation of the damping of turbulent transport close to the wall. The anisotropic wall effects are modelled through the elliptic relaxation function f, by solving a separate elliptic equation of the Helmholtz type.


In order to improve the computational preformances of the \overline{\upsilon^2}-f model, a variant of this eddy-viscosity model is derived when the change of variables is introduced. Instead of using the wall-normal velocity fluctuation \overline{\upsilon^2} as the velocity scale, the normalised wall-normal velocity scale \zeta = \overline{\upsilon^2} / k is used (hence the name \zeta-f or the zeta-f model). This turbulence variable can be regarded as the ratio of the two time scales: scalar k / \varepsilon (isotropic), and lateral \overline{\upsilon^2} / \varepsilon (anisotropic). Following the definition of \zeta, the new transport equation is derived from the equations for \overline{\upsilon^2} and k, and solved instead of the transport equation for \overline{\upsilon^2}.

The \overline{\upsilon^2} - f equations

The turbulent viscosity is defined as

\nu_t^{\overline{\upsilon^2}} = C_\mu \, \overline{\upsilon^2} \, T

and the turbulent quantities, in addition to standard k and \varepsilon, are obtaned from two more equations: the transport equation for \overline{\upsilon^2}

\frac{\partial \overline{\upsilon^2}}{\partial t} + U_j \frac{\partial \overline{\upsilon^2}}{\partial x_j} = k f - \frac{\overline{\upsilon^2}}{k} \varepsilon + \frac{\partial}{\partial x_j} \left[ \left( \nu + \frac{\nu_t}{\sigma_{\overline{\upsilon^2}}} \right) \frac{\partial \overline{\upsilon^2}}{\partial x_j} \right]

and the elliptic equation for the relaxation function f

L^2 \nabla^2 f - f = \frac{C_1 - 1}{T} \left( \frac{\overline{\upsilon^2}}{k} - \frac{2}{3} \right) - C_2 \frac{P_k}{\varepsilon}

where the turbulence length scale L

\displaystyle L = C_L \max \left[ \frac{\displaystyle k^{3/2}}{\displaystyle \varepsilon} , C_{\eta} \left( \frac{\displaystyle \nu^3}{\displaystyle \varepsilon} \right)^{1/4} \right]

and the turbulence time scale T

\displaystyle T = \max \left[ \frac{\displaystyle k}{\displaystyle \varepsilon} , C_T \left( \frac{\displaystyle \nu}{\displaystyle \varepsilon} \right)^{1/2} \right]

are bounded with their respective the Kolmogorov definitions (realisability constraints can also be applied, as given below).

The coefficients used read: C_\mu = 0.22, \sigma_{\overline{\upsilon^2}} = 1, C_1 = 1.4, C_2 = 0.45, C_T = 6, C_L = 0.25 and C_{\eta} = 85.

The \zeta - f equations

The turbulent viscosity is defined as

\nu_t^\zeta = C_\mu \, \zeta \, k \, T

and the turbulent quantities are obtained from another set of equations. When the change of variables is done, the obtained transport equation for \zeta reads

\frac{\partial \zeta}{\partial t} + U_j \frac{\partial \zeta}{\partial x_j} = f - \frac{\zeta}{k} P_k + \frac{\partial}{\partial x_j} \left[ \left( \nu + \frac{\nu_t}{\sigma_{\zeta}} \right) \frac{\partial \zeta}{\partial x_j} \right]

and, in conjunction with the quasi-linear SSG pressure-strain model, the elliptic equation for the relaxation function f

L^2 \nabla^2 f - f = \frac{1}{T} \left( C_1 - 1 + C'_2 \frac{P_k}{\varepsilon} \right) \left( \zeta - \frac{2}{3} \right)

where the turbulence time scale T

T = \max \left[ \min \left( \frac{k}{\varepsilon},\, \frac{0.6}{\sqrt{6} C_{\mu} |S|\zeta} \right), C_T  \left( \frac{\nu}{\varepsilon} \right)^{1/2} \right]

and the turbulence length scale L

L = C_L \, \max \left[ \min \left( \frac{k^{3/2}}{\varepsilon}, \,
  \frac{k^{1/2}}{\sqrt{6} C_{\mu} |S| \zeta} \right), C_{\eta}
  \left( \frac{\nu^3}{\varepsilon} \right)^{1/4} \right]

are limited with their Kolmogorov values as the lower bounds, and Durbin's realisability constraints.

The coefficients used read: C_\mu = 0.22, \sigma_{\zeta} = 1.2, C_1 = 1.4, C_2' = 0.65, C_T = 6, C_L = 0.36 and C_{\eta} = 85.

Notes

This model can not be used to solve Eulerian multiphase problems.

Mathematically and physically the \overline{\upsilon^2}-f and the \zeta-f model are the same, but due to better numerical properties (stability and near-wall mesh requirements) the \zeta-f model performs better in the complex flow calculations.

References

  • Durbin, P. Separated flow computations with the k-\epsilon-\overline{v^2} model, AIAA Journal, 33, 659-664, 1995.
  • Laurence, D.R., Uribe J.C., Utyuzhnikov, S.V. A Robust Formulation of the v2-f Model, Flow Turbulence and Combustion, 73, 169-185, 2004.
  • Popovac, M., Hanjalic, K. Compound Wall Treatment for RANS Computation of Complex Turbulent Flows and Heat Transfer, Flow Turbulence and Combustion, 78, 177-202, 2007.


My wiki