CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Wiki > Conjugate gradient methods

Conjugate gradient methods

From CFD-Wiki

(Difference between revisions)
Jump to: navigation, search
Line 6: Line 6:
This minimum is guaranteed to exist in general only if '''A''' is symmetric positive definite. The preconditioned version of these methods use a different subspace for constructing the iterates, but it satisfies the same minimization property over different subspace. It requires that the preconditioner '''M''' is symmetric and positive definite.
This minimum is guaranteed to exist in general only if '''A''' is symmetric positive definite. The preconditioned version of these methods use a different subspace for constructing the iterates, but it satisfies the same minimization property over different subspace. It requires that the preconditioner '''M''' is symmetric and positive definite.
 +
 +
 +
----
 +
<i> Return to [[Numerical methods | Numerical Methods]] </i>

Revision as of 06:25, 3 October 2005

Basic Concept

For the system of equations:

 AX = B

The unpreconditioned conjugate gradient method constructs the ith iterate x^{(k)} as an element of  x^{(k)}  + span\left\{ {r^{(0)} ,...,A^{i - 1} r^{(0)} } \right\}  so that so that  \left( {x^{(0)}  - \hat x} \right)^T A\left( {x^{(i)}  - \hat x} \right) is minimized , where  {\hat x} is the exact solution of  AX = B .

This minimum is guaranteed to exist in general only if A is symmetric positive definite. The preconditioned version of these methods use a different subspace for constructing the iterates, but it satisfies the same minimization property over different subspace. It requires that the preconditioner M is symmetric and positive definite.



Return to Numerical Methods

My wiki