Cebeci-Smith model
From CFD-Wiki
(Copied from B-L model, still pretty rough) |
|||
Line 1: | Line 1: | ||
- | == | + | == Introduction == |
- | + | The Cebeci-Smith [[#References|[Cebeci and Smith (1967)]]] is a two-layer algebraic 0-equation model which gives the eddy viscosity, <math>\mu_t</math>, as a function of the local boundary layer velocity profile. The model is suitable for high-speed flows with thin attached boundary-layers, typically present in aerospace applications. Like the [[Baldwin-Lomax model]], this model is not suitable for cases with large separated regions and significant curvature/rotation effects (see below). Unlike the [[Baldwin-Lomax model]], this model requires the determination of of a boundary layer edge. | |
+ | == Equations == | ||
- | ---- | + | <table width="100%"><tr><td> |
- | < | + | :<math> |
+ | \mu_t = | ||
+ | \begin{cases} | ||
+ | {\mu_t}_{inner} & \mbox{if } y \le y_{crossover} \\ | ||
+ | {\mu_t}_{outer} & \mbox{if} y > y_{crossover} | ||
+ | \end{cases} | ||
+ | </math></td><td width="5%">(1)</td></tr></table> | ||
+ | |||
+ | where <math>y_{crossover}</math> is the smallest distance from the surface where <math>{\mu_t}_{inner}</math> is equal to <math>{\mu_t}_{outer}</math>: | ||
+ | |||
+ | <table width="100%"><tr><td> | ||
+ | :<math> | ||
+ | y_{crossover} = MIN(y) \ : \ {\mu_t}_{inner} = {\mu_t}_{outer} | ||
+ | </math></td><td width="5%">(2)</td></tr></table> | ||
+ | |||
+ | The inner region is given by the Prandtl - Van Driest formula: | ||
+ | |||
+ | <table width="100%"><tr><td> | ||
+ | :<math> | ||
+ | {\mu_t}_{inner} = \rho l^2 \left| \Omega \right| | ||
+ | </math></td><td width="5%">(3)</td></tr></table> | ||
+ | |||
+ | where | ||
+ | |||
+ | <table width="100%"><tr><td> | ||
+ | :<math> | ||
+ | l = \kappa y \left( 1 - e^{\frac{-y^+}{A^+}} \right) | ||
+ | </math></td><td width="5%">(4)</td></tr></table> | ||
+ | |||
+ | <table width="100%"><tr><td> | ||
+ | :<math> | ||
+ | \kappa = 0.4, A^+ = 26\left[1+y\frac{dP/dx}{\rho u_\tau^2}\right]^{-1/2} | ||
+ | </math></td><td width="5%">(5)</td></tr></table> | ||
+ | |||
+ | <table width="100%"><tr><td> | ||
+ | :<math> | ||
+ | \left| \Omega \right| = \sqrt{2 \Omega_{ij} \Omega_{ij}} | ||
+ | </math></td><td width="5%">(5)</td></tr></table> | ||
+ | |||
+ | <table width="100%"><tr><td> | ||
+ | :<math> | ||
+ | \Omega_{ij} = \frac{1}{2} | ||
+ | \left( | ||
+ | \frac{\partial u_i}{\partial x_j} - | ||
+ | \frac{\partial u_j}{\partial x_i} | ||
+ | \right) | ||
+ | </math></td><td width="5%">(6)</td></tr></table> | ||
+ | |||
+ | The outer region is given by: | ||
+ | |||
+ | <table width="100%"><tr><td> | ||
+ | :<math> | ||
+ | {\mu_t}_{outer} = \alpha \rho U_e \delta_v^* F_{KLEB}(y;\delta), | ||
+ | </math></td><td width="5%">(7)</td></tr></table> | ||
+ | |||
+ | where <math>\alpha=0.0168</math>, <math>\delta_v^*</math> is the velocity thickness given by | ||
+ | |||
+ | <table width="100%"><tr><td> | ||
+ | :<math> | ||
+ | \delta_v^* = \int_0^\delta (1-U/U_e)dy, | ||
+ | </math></td><td width="5%">(8)</td></tr></table> | ||
+ | |||
+ | and <math>F_{KLEB}</math> is the Klebanoff intermittency function given by | ||
+ | |||
+ | <table width="100%"><tr><td> | ||
+ | :<math> | ||
+ | F_{KLEB}(y;\delta) = \left[1 + 5.5 \left( \frac{y}{\delta} \right)^6 | ||
+ | \right]^{-1} | ||
+ | </math></td><td width="5%">(10)</td></tr></table> | ||
+ | |||
+ | |||
+ | == Model variants == | ||
+ | |||
+ | |||
+ | == Performance, applicability and limitations == | ||
+ | |||
+ | |||
+ | == Implementation issues == | ||
+ | |||
+ | |||
+ | == References == | ||
+ | |||
+ | *<b>Smith, A.M.O. and Cebeci, T.</b> Numerical solution of the turbulent boundary layer equations, Douglas aircraft division report DAC 33735. | ||
+ | * {{reference-book|author=Wilcox, D.C. |year=1998|title=Turbulence Modeling for CFD|rest=ISBN 1-928729-10-X, 2nd Ed., DCW Industries, Inc.}} |
Revision as of 18:22, 5 May 2006
Contents |
Introduction
The Cebeci-Smith [Cebeci and Smith (1967)] is a two-layer algebraic 0-equation model which gives the eddy viscosity, , as a function of the local boundary layer velocity profile. The model is suitable for high-speed flows with thin attached boundary-layers, typically present in aerospace applications. Like the Baldwin-Lomax model, this model is not suitable for cases with large separated regions and significant curvature/rotation effects (see below). Unlike the Baldwin-Lomax model, this model requires the determination of of a boundary layer edge.
Equations
| (1) |
where is the smallest distance from the surface where is equal to :
| (2) |
The inner region is given by the Prandtl - Van Driest formula:
| (3) |
where
| (4) |
| (5) |
| (5) |
| (6) |
The outer region is given by:
| (7) |
where , is the velocity thickness given by
| (8) |
and is the Klebanoff intermittency function given by
| (10) |
Model variants
Performance, applicability and limitations
Implementation issues
References
- Smith, A.M.O. and Cebeci, T. Numerical solution of the turbulent boundary layer equations, Douglas aircraft division report DAC 33735.
- Wilcox, D.C. (1998), Turbulence Modeling for CFD, ISBN 1-928729-10-X, 2nd Ed., DCW Industries, Inc..