CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Wiki > NACA0012 airfoil

NACA0012 airfoil

From CFD-Wiki

(Difference between revisions)
Jump to: navigation, search
Jack1980 (Talk | contribs)
(New page: == Introduction == The NACA 0012 airfoil is widely used. The simple geometry and the large amount of wind tunnel data provide an excellent 2D validation case. For this case I use the Spala...)
Newer edit →

Revision as of 18:36, 10 November 2009

Contents

Introduction

The NACA 0012 airfoil is widely used. The simple geometry and the large amount of wind tunnel data provide an excellent 2D validation case. For this case I use the Spalart-Allmaras turbulence model.

Mesh




The mesh is a 30,000 cell C-grid. The width off the first cell at the foil boundary is 0.02 mm. At Re = 3e6 this results in a wall y+ = 1.3 ± 0.4 .

Drag Coefficient




The drag coefficient at zero Angle of Attack depends on the Reynold's number. The experimental data is for an airfoil with a trip wire that forces the experimental boundary layer to be completely turbulent.[1] This corresponds to the Fluent model, which has an active turbulence model over the complete airfoil.

Lift Curve




The lift coefficient depends on the Angle of Attack. For Re = 2e6 I compare the lift coefficient to experimental results.[2]

Lift Curve Slope




The initial slope of the lift curve depends on the Reynold's number. Here I compare the lift curve slope to experimental results.[1]

References

1. W. J. McCroskey, A Critical Assessment of Wind Tunnel Results for the NACA 0012 Airfoil, NASA Technical Memorandum 10001 9 (1987)
2. L. Lazauskus, NACA 0012 Lift Data

My wiki